Papers
Topics
Authors
Recent
Search
2000 character limit reached

PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning Applications

Published 3 Feb 2023 in cs.AR, cs.AI, and cs.LG | (2302.01876v1)

Abstract: Posit has been a promising alternative to the IEEE-754 floating point format for deep learning applications due to its better trade-off between dynamic range and accuracy. However, hardware implementation of posit arithmetic requires further exploration, especially for the dot-product operations dominated in deep neural networks (DNNs). It has been implemented by either the combination of multipliers and an adder tree or cascaded fused multiply-add units, leading to poor computational efficiency and excessive hardware overhead. To address this issue, we propose an open-source posit dot-product unit, namely PDPU, that facilitates resource-efficient and high-throughput dot-product hardware implementation. PDPU not only features the fused and mixed-precision architecture that eliminates redundant latency and hardware resources, but also has a fine-grained 6-stage pipeline, improving computational efficiency. A configurable PDPU generator is further developed to meet the diverse needs of various DNNs for computational accuracy. Experimental results evaluated under the 28nm CMOS process show that PDPU reduces area, latency, and power by up to 43%, 64%, and 70%, respectively, compared to the existing implementations. Hence, PDPU has great potential as the computing core of posit-based accelerators for deep learning applications.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.