Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

The Accuracy and Efficiency of Posit Arithmetic (2109.08225v1)

Published 16 Sep 2021 in cs.AR and cs.PF

Abstract: Motivated by the increasing interest in the posit numeric format, in this paper we evaluate the accuracy and efficiency of posit arithmetic in contrast to the traditional IEEE 754 32-bit floating-point (FP32) arithmetic. We first design and implement a Posit Arithmetic Unit (PAU), called POSAR, with flexible bit-sized arithmetic suitable for applications that can trade accuracy for savings in chip area. Next, we analyze the accuracy and efficiency of POSAR with a series of benchmarks including mathematical computations, ML kernels, NAS Parallel Benchmarks (NPB), and Cifar-10 CNN. This analysis is done on our implementation of POSAR integrated into a RISC-V Rocket Chip core in comparison with the IEEE 754-based Floting Point Unit (FPU) of Rocket Chip. Our analysis shows that POSAR can outperform the FPU, but the results are not spectacular. For NPB, 32-bit posit achieves better accuracy than FP32 and improves the execution by up to 2%. However, POSAR with 32-bit posit needs 30% more FPGA resources compared to the FPU. For classic ML algorithms, we find that 8-bit posits are not suitable to replace FP32 because they exhibit low accuracy leading to wrong results. Instead, 16-bit posit offers the best option in terms of accuracy and efficiency. For example, 16-bit posit achieves the same Top-1 accuracy as FP32 on a Cifar-10 CNN with a speedup of 18%.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com