Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics (2302.01501v2)

Published 3 Feb 2023 in cs.IR, cs.AI, cs.LG, cs.NE, and cs.SI

Abstract: This paper presents an algorithmic family of dynamic topic models called Aligned Neural Topic Models (ANTM), which combine novel data mining algorithms to provide a modular framework for discovering evolving topics. ANTM maintains the temporal continuity of evolving topics by extracting time-aware features from documents using advanced pre-trained LLMs and employing an overlapping sliding window algorithm for sequential document clustering. This overlapping sliding window algorithm identifies a different number of topics within each time frame and aligns semantically similar document clusters across time periods. This process captures emerging and fading trends across different periods and allows for a more interpretable representation of evolving topics. Experiments on four distinct datasets show that ANTM outperforms probabilistic dynamic topic models in terms of topic coherence and diversity metrics. Moreover, it improves the scalability and flexibility of dynamic topic models by being accessible and adaptable to different types of algorithms. Additionally, a Python package is developed for researchers and scientists who wish to study the trends and evolving patterns of topics in large-scale textual data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.