Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real Estate Property Valuation using Self-Supervised Vision Transformers (2302.00117v1)

Published 31 Jan 2023 in cs.CV, cs.AI, cs.LG, and econ.EM

Abstract: The use of AI in the real estate market has been growing in recent years. In this paper, we propose a new method for property valuation that utilizes self-supervised vision transformers, a recent breakthrough in computer vision and deep learning. Our proposed algorithm uses a combination of machine learning, computer vision and hedonic pricing models trained on real estate data to estimate the value of a given property. We collected and pre-processed a data set of real estate properties in the city of Boulder, Colorado and used it to train, validate and test our algorithm. Our data set consisted of qualitative images (including house interiors, exteriors, and street views) as well as quantitative features such as the number of bedrooms, bathrooms, square footage, lot square footage, property age, crime rates, and proximity to amenities. We evaluated the performance of our model using metrics such as Root Mean Squared Error (RMSE). Our findings indicate that these techniques are able to accurately predict the value of properties, with a low RMSE. The proposed algorithm outperforms traditional appraisal methods that do not leverage property images and has the potential to be used in real-world applications.

Summary

We haven't generated a summary for this paper yet.