Papers
Topics
Authors
Recent
2000 character limit reached

Personalized Privacy Auditing and Optimization at Test Time (2302.00077v1)

Published 31 Jan 2023 in cs.LG, cs.AI, and cs.CR

Abstract: A number of learning models used in consequential domains, such as to assist in legal, banking, hiring, and healthcare decisions, make use of potentially sensitive users' information to carry out inference. Further, the complete set of features is typically required to perform inference. This not only poses severe privacy risks for the individuals using the learning systems, but also requires companies and organizations massive human efforts to verify the correctness of the released information. This paper asks whether it is necessary to require \emph{all} input features for a model to return accurate predictions at test time and shows that, under a personalized setting, each individual may need to release only a small subset of these features without impacting the final decisions. The paper also provides an efficient sequential algorithm that chooses which attributes should be provided by each individual. Evaluation over several learning tasks shows that individuals may be able to report as little as 10\% of their information to ensure the same level of accuracy of a model that uses the complete users' information.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.