Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Average Envy-freeness for Indivisible Items (2301.12653v1)

Published 30 Jan 2023 in cs.GT

Abstract: In fair division applications, agents may have unequal entitlements reflecting their different contributions. Moreover, the contributions of agents may depend on the allocation itself. Previous fairness notions designed for agents with equal or pre-determined entitlement fail to characterize fairness in these collaborative allocation scenarios. We propose a novel fairness notion of average envy-freeness (AEF), where the envy of agents is defined on the average value of items in the bundles. Average envy-freeness provides a reasonable comparison between agents based on the items they receive and reflects their entitlements. We study the complexity of finding AEF and its relaxation, average envy-freeness up to one item (AEF-1). While deciding if an AEF allocation exists is NP-complete, an AEF-1 allocation is guaranteed to exist and can be computed in polynomial time. We also study allocation with quotas, i.e. restrictions on the sizes of bundles. We prove that finding AEF-1 allocation satisfying a quota is NP-hard. Nevertheless, in the instances with a fixed number of agents, we propose polynomial-time algorithms to find AEF-1 allocation with a quota for binary valuation and approximated AEF-1 allocation with a quota for general valuation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.