Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Division with Prioritized Agents (2211.16143v1)

Published 29 Nov 2022 in cs.GT

Abstract: We consider the fair division problem of indivisible items. It is well-known that an envy-free allocation may not exist, and a relaxed version of envy-freeness, envy-freeness up to one item (EF1), has been widely considered. In an EF1 allocation, an agent may envy others' allocated shares, but only up to one item. In many applications, we may wish to specify a subset of prioritized agents where strict envy-freeness needs to be guaranteed from these agents to the remaining agents, while ensuring the whole allocation is still EF1. Prioritized agents may be those agents who are envious in a previous EF1 allocation, those agents who belong to underrepresented groups, etc. Motivated by this, we propose a new fairness notion named envy-freeness with prioritized agents "EFPrior", and study the existence and the algorithmic aspects for the problem of computing an EFPrior allocation. With additive valuations, the simple round-robin algorithm is able to compute an EFPrior allocation. In this paper, we mainly focus on general valuations. In particular, we present a polynomial-time algorithm that outputs an EFPrior allocation with most of the items allocated. When all the items need to be allocated, we also present polynomial-time algorithms for some well-motivated special cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaolin Bu (8 papers)
  2. Zihao Li (161 papers)
  3. Shengxin Liu (15 papers)
  4. Jiaxin Song (19 papers)
  5. Biaoshuai Tao (30 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.