Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Reinforcement Learning Framework for Optimizing Congestion Control in Data Centers (2301.12558v1)

Published 29 Jan 2023 in cs.NI and cs.LG

Abstract: Various congestion control protocols have been designed to achieve high performance in different network environments. Modern online learning solutions that delegate the congestion control actions to a machine cannot properly converge in the stringent time scales of data centers. We leverage multiagent reinforcement learning to design a system for dynamic tuning of congestion control parameters at end-hosts in a data center. The system includes agents at the end-hosts to monitor and report the network and traffic states, and agents to run the reinforcement learning algorithm given the states. Based on the state of the environment, the system generates congestion control parameters that optimize network performance metrics such as throughput and latency. As a case study, we examine BBR, an example of a prominent recently-developed congestion control protocol. Our experiments demonstrate that the proposed system has the potential to mitigate the problems of static parameters.

Summary

We haven't generated a summary for this paper yet.