Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Influences of Color and Shape Features in Visual Contrastive Learning (2301.12459v1)

Published 29 Jan 2023 in cs.CV

Abstract: In the field of visual representation learning, performance of contrastive learning has been catching up with the supervised method which is commonly a classification convolutional neural network. However, most of the research work focuses on improving the accuracy of downstream tasks such as image classification and object detection. For visual contrastive learning, the influences of individual image features (e.g., color and shape) to model performance remain ambiguous. This paper investigates such influences by designing various ablation experiments, the results of which are evaluated by specifically designed metrics. While these metrics are not invented by us, we first use them in the field of representation evaluation. Specifically, we assess the contribution of two primary image features (i.e., color and shape) in a quantitative way. Experimental results show that compared with supervised representations, contrastive representations tend to cluster with objects of similar color in the representation space, and contain less shape information than supervised representations. Finally, we discuss that the current data augmentation is responsible for these results. We believe that exploring an unsupervised augmentation method that

Summary

We haven't generated a summary for this paper yet.