Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MRAC with Memory for Switched Linear Systems (2301.12285v1)

Published 28 Jan 2023 in eess.SY and cs.SY

Abstract: This work proposes a switched model reference adaptive control (S-MRAC) architecture for a multi-input multi-output (MIMO) switched linear system with memory for enhanced learning. A salient feature of the proposed method that separates it from most previous results is the use of memory that store the estimator states at switching and facilitate parameter learning during both active and inactive phases of a subsystem, thereby improving the tracking performance of the overall switched system. Specifically, the learning experience from the previous active duration of a subsystem is retained in the memory and reused when the subsystem is inactive and when the subsystem becomes active again. Parameter convergence is shown based on an intermittent initial excitation (IIE), which is significantly relaxed than the classical persistence of excitation (PE) condition. A common Lyapunov function is considered to ensure closed-loop stability with S-MRAC. Further under IIE, the exponential stability of tracking and parameter estimation error dynamics are guaranteed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.