Papers
Topics
Authors
Recent
2000 character limit reached

Big portfolio selection by graph-based conditional moments method

Published 27 Jan 2023 in stat.ML and cs.LG | (2301.11697v1)

Abstract: How to do big portfolio selection is very important but challenging for both researchers and practitioners. In this paper, we propose a new graph-based conditional moments (GRACE) method to do portfolio selection based on thousands of stocks or more. The GRACE method first learns the conditional quantiles and mean of stock returns via a factor-augmented temporal graph convolutional network, which guides the learning procedure through a factor-hypergraph built by the set of stock-to-stock relations from the domain knowledge as well as the set of factor-to-stock relations from the asset pricing knowledge. Next, the GRACE method learns the conditional variance, skewness, and kurtosis of stock returns from the learned conditional quantiles by using the quantiled conditional moment (QCM) method. The QCM method is a supervised learning procedure to learn these conditional higher-order moments, so it largely overcomes the computational difficulty from the classical high-dimensional GARCH-type methods. Moreover, the QCM method allows the mis-specification in modeling conditional quantiles to some extent, due to its regression-based nature. Finally, the GRACE method uses the learned conditional mean, variance, skewness, and kurtosis to construct several performance measures, which are criteria to sort the stocks to proceed the portfolio selection in the well-known 10-decile framework. An application to NASDAQ and NYSE stock markets shows that the GRACE method performs much better than its competitors, particularly when the performance measures are comprised of conditional variance, skewness, and kurtosis.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.