Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved Stock Price Movement Classification Using News Articles Based on Embeddings and Label Smoothing (2301.10458v1)

Published 25 Jan 2023 in cs.LG, cs.AI, cs.CL, and cs.NE

Abstract: Stock price movement prediction is a challenging and essential problem in finance. While it is well established in modern behavioral finance that the share prices of related stocks often move after the release of news via reactions and overreactions of investors, how to capture the relationships between price movements and news articles via quantitative models is an active area research; existing models have achieved success with variable degrees. In this paper, we propose to improve stock price movement classification using news articles by incorporating regularization and optimization techniques from deep learning. More specifically, we capture the dependencies between news articles and stocks through embeddings and bidirectional recurrent neural networks as in recent models. We further incorporate weight decay, batch normalization, dropout, and label smoothing to improve the generalization of the trained models. To handle high fluctuations of validation accuracy of batch normalization, we propose dual-phase training to realize the improvements reliably. Our experimental results on a commonly used dataset show significant improvements, achieving average accuracy of 80.7% on the test set, which is more than 10.0% absolute improvement over existing models. Our ablation studies show batch normalization and label smoothing are most effective, leading to 6.0% and 3.4% absolute improvement, respectively on average.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.