Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis

Published 23 Jan 2023 in quant-ph, cs.NA, math.NA, q-fin.CP, and q-fin.MF | (2301.09241v4)

Abstract: In this paper we provide a quantum Monte Carlo algorithm to solve high-dimensional Black-Scholes PDEs with correlation for high-dimensional option pricing. The payoff function of the option is of general form and is only required to be continuous and piece-wise affine (CPWA), which covers most of the relevant payoff functions used in finance. We provide a rigorous error analysis and complexity analysis of our algorithm. In particular, we prove that the computational complexity of our algorithm is bounded polynomially in the space dimension $d$ of the PDE and the reciprocal of the prescribed accuracy $\varepsilon$. Moreover, we show that for payoff functions which are bounded, our algorithm indeed has a speed-up compared to classical Monte Carlo methods. Furthermore, we provide numerical simulations in one and two dimensions using our developed package within the Qiskit framework tailored to price CPWA options with respect to the Black-Scholes model, as well as discuss the potential extension of the numerical simulations to arbitrary space dimension.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 37 likes about this paper.