Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DASTSiam: Spatio-Temporal Fusion and Discriminative Augmentation for Improved Siamese Tracking (2301.09063v1)

Published 22 Jan 2023 in cs.CV, cs.GR, and cs.LG

Abstract: Tracking tasks based on deep neural networks have greatly improved with the emergence of Siamese trackers. However, the appearance of targets often changes during tracking, which can reduce the robustness of the tracker when facing challenges such as aspect ratio change, occlusion, and scale variation. In addition, cluttered backgrounds can lead to multiple high response points in the response map, leading to incorrect target positioning. In this paper, we introduce two transformer-based modules to improve Siamese tracking called DASTSiam: the spatio-temporal (ST) fusion module and the Discriminative Augmentation (DA) module. The ST module uses cross-attention based accumulation of historical cues to improve robustness against object appearance changes, while the DA module associates semantic information between the template and search region to improve target discrimination. Moreover, Modifying the label assignment of anchors also improves the reliability of the object location. Our modules can be used with all Siamese trackers and show improved performance on several public datasets through comparative and ablation experiments.

Summary

We haven't generated a summary for this paper yet.