Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential learning and control: Targeted exploration for robust performance (2301.07995v3)

Published 19 Jan 2023 in eess.SY and cs.SY

Abstract: We present a novel dual control strategy for uncertain linear systems based on targeted harmonic exploration and gain-scheduling with performance and excitation guarantees. In the proposed sequential approach, robust control is implemented after exploration with the main feature that the exploration is optimized with respect to the robust control performance. Specifically, we leverage recent results on finite excitation using spectral lines to determine a high probability lower bound on the resultant finite excitation of the exploration data. This provides an a priori upper bound on the remaining model uncertainty after exploration, which can further be leveraged in a gain-scheduling controller design that guarantees robust performance. This leads to a semidefinite program-based design which computes an exploration strategy with finite excitation bounds and minimal energy, and a gain-scheduled controller with probabilistic performance bounds that can be implemented after exploration. The effectiveness of our approach and its benefits over common random exploration strategies are demonstrated with an example of a system which is 'hard to learn'.

Citations (1)

Summary

We haven't generated a summary for this paper yet.