Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Duality in the directed landscape and its applications to fractal geometry (2301.07704v4)

Published 18 Jan 2023 in math.PR

Abstract: Geodesic coalescence, or the tendency of geodesics to merge together, is a haLLMark phenomenon observed in a variety of planar random geometries involving a random distortion of the Euclidean metric. As a result of this, the union of interiors of all geodesics going to a fixed point tends to form a tree-like structure which is supported on a vanishing fraction of the space. Such geodesic trees exhibit intricate fractal behaviour; for instance, while almost every point in the space has only one geodesic going to the fixed point, there exist atypical points which admit two such geodesics. In this paper, we consider the directed landscape, the recently constructed scaling limit of exponential last passage percolation (LPP), with the aim of developing tools to analyse the fractal aspects of the tree of semi-infinite geodesics in a given direction. We use the duality (Pimentel '16) between the geodesic tree and the interleaving competition interfaces in exponential LPP to obtain a duality between the geodesic tree and the corresponding dual tree in the landscape. Using this, we show that problems concerning the fractal behaviour of sets of atypical points for the geodesic tree can be transformed into corresponding problems for the dual tree, which might turn out to be easier. In particular, we use this method to show that the set of points admitting two semi-infinite geodesics in a fixed direction a.s. has Hausdorff dimension $4/3$, thereby answering a question posed in Busani-Sepp\"{a}l\"{a}inen-Sorensen '22. We also show that the set of points admitting three semi-infinite geodesics in a fixed direction is a.s. countable.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)