Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Knowledge Adaptation for Federated Unsupervised Person ReID

Published 18 Jan 2023 in cs.CV | (2301.07320v1)

Abstract: Person Re-identification (ReID) has been extensively studied in recent years due to the increasing demand in public security. However, collecting and dealing with sensitive personal data raises privacy concerns. Therefore, federated learning has been explored for Person ReID, which aims to share minimal sensitive data between different parties (clients). However, existing federated learning based person ReID methods generally rely on laborious and time-consuming data annotations and it is difficult to guarantee cross-domain consistency. Thus, in this work, a federated unsupervised cluster-contrastive (FedUCC) learning method is proposed for Person ReID. FedUCC introduces a three-stage modelling strategy following a coarse-to-fine manner. In detail, generic knowledge, specialized knowledge and patch knowledge are discovered using a deep neural network. This enables the sharing of mutual knowledge among clients while retaining local domain-specific knowledge based on the kinds of network layers and their parameters. Comprehensive experiments on 8 public benchmark datasets demonstrate the state-of-the-art performance of our proposed method.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.