Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using citation networks to evaluate the impact of text length on the identification of relevant concepts (2301.06168v1)

Published 15 Jan 2023 in cs.DL

Abstract: The identification of the most significant concepts in unstructured data is of critical importance in various practical applications. Despite the large number of methods that have been put forth to extract the main topics of texts, a limited number of studies have probed the impact of the text length on the performance of keyword extraction (KE) methods. In this study, we adopted a network-based approach to evaluate whether keywords extracted from paper abstracts are compatible with keywords extracted from full papers. We employed a community detection method to identify groups of related papers in citation networks. These paper clusters were then employed to extract keywords from abstracts. Our results indicate that while the various community detection methods employed in our KE approach yielded similar levels of accuracy, a correlation analysis revealed that these methods produced distinct keyword lists for each abstract. We also observed that all considered approaches, however, reach low values of accuracy. Surprisingly, text clustering approaches outperformed all citation-based methods. The findings suggest that using different sources of information to extract keywords can lead to significant differences in performance. This effect can play an important role in applications relying upon the identification of relevant concepts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.