Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Neural Networks Using Residual Fitting (2301.05744v1)

Published 13 Jan 2023 in cs.LG and cs.NE

Abstract: Current methods for estimating the required neural-network size for a given problem class have focused on methods that can be computationally intensive, such as neural-architecture search and pruning. In contrast, methods that add capacity to neural networks as needed may provide similar results to architecture search and pruning, but do not require as much computation to find an appropriate network size. Here, we present a network-growth method that searches for explainable error in the network's residuals and grows the network if sufficient error is detected. We demonstrate this method using examples from classification, imitation learning, and reinforcement learning. Within these tasks, the growing network can often achieve better performance than small networks that do not grow, and similar performance to networks that begin much larger.

Summary

We haven't generated a summary for this paper yet.