Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic Invariants of Codes on Weighted Projective Planes (2301.05313v2)

Published 12 Jan 2023 in cs.IT, math.AC, math.AG, and math.IT

Abstract: Weighted projective spaces are natural generalizations of projective spaces with a rich structure. Projective Reed-Muller codes are error-correcting codes that played an important role in reliably transmitting information on digital communication channels. In this case study, we explore the power of commutative and homological algebraic techniques to study weighted projective Reed-Muller (WPRM) codes on weighted projective spaces of the form $\mathbb{P}(1,1,a)$. We compute minimal free resolutions and thereby obtain Hilbert series for the vanishing ideal of the $\mathbb{F}_q$-rational points, and compute main parameters for these codes.

Summary

We haven't generated a summary for this paper yet.