Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum error-correcting codes from projective Reed-Muller codes and their hull variation problem (2312.15308v3)

Published 23 Dec 2023 in cs.IT and math.IT

Abstract: Long quantum codes using projective Reed-Muller codes are constructed. Projective Reed-Muller codes are evaluation codes obtained by evaluating homogeneous polynomials at the projective space. We obtain asymmetric and symmetric quantum codes by using the CSS construction and the Hermitian construction, respectively. We provide entanglement-assisted quantum error-correcting codes from projective Reed-Muller codes with flexible amounts of entanglement by considering equivalent codes. Moreover, we also construct quantum codes from subfield subcodes of projective Reed-Muller codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Relative hulls and quantum codes. ArXiv 2212.14521, 2022.
  2. S. Ball. Some constructions of quantum MDS codes. Des. Codes Cryptogr., 89(5):811–821, 2021.
  3. J. Bierbrauer and Y. Edel. Quantum twisted codes. J. Combin. Des., 8(3):174–188, 2000.
  4. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
  5. Correcting quantum errors with entanglement. Science, 314(5798):436–439, 2006.
  6. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.
  7. H. Chen. On the hull-variation problem of equivalent linear codes. IEEE Trans. Inform. Theory, 69(5):2911–2922, 2023.
  8. On generalized Reed-Muller codes and their relatives. Information and Control, 16:403–442, 1970.
  9. K. Feng and Z. Ma. A finite Gilbert-Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inform. Theory, 50(12):3323–3325, 2004.
  10. Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process., 18(4):Paper No. 116, 18, 2019.
  11. Entanglement-assisted quantum error-correcting codes from subfield subcodes of projective Reed–Solomon codes. Comput. Appl. Math., 42(363), 2023.
  12. Subfield subcodes of projective Reed-Muller codes. ArXiv 2307.09298, 2023.
  13. M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007. Accessed on 2023-11-23.
  14. L. Ioffe and M. Mézard. Asymmetric quantum error-correcting codes. Phys. Rev. A, 75:032345, Mar 2007.
  15. New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory, IT-14:189–199, 1968.
  16. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory, 52(11):4892–4914, 2006.
  17. G. Lachaud. The parameters of projective Reed-Muller codes. Discrete Math., 81(2):217–221, 1990.
  18. How much entanglement does a quantum code need? arXiv, 2022.
  19. R. Matsumoto. Improved gilbert–varshamov bound for entanglement-assisted asymmetric quantum error correction by symplectic orthogonality. IEEE Trans. Quantum Eng., 1:1–4, 2020.
  20. D. Ruano and R. San-José. Hulls of projective Reed-Muller codes over the projective plane. ArXiv 2312.13921, 2023.
  21. R. San-José. A recursive construction for projective Reed-Muller codes. ArXiv 2312.05072, 2023.
  22. Nonbinary stabilizer codes. In Mathematics of quantum computation and quantum technology, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., pages 287–308. Chapman & Hall/CRC, Boca Raton, FL, 2008.
  23. A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991.
  24. A. Steane. Multiple-Particle Interference and Quantum Error Correction. Proceedings of the Royal Society of London Series A, 452(1954):2551–2577, Nov. 1996.

Summary

We haven't generated a summary for this paper yet.