Papers
Topics
Authors
Recent
2000 character limit reached

Hypersurfaces in weighted projective spaces over finite fields with applications to coding theory

Published 9 Jun 2017 in math.AG, cs.IT, and math.IT | (1706.03050v1)

Abstract: We consider the question of determining the maximum number of $\mathbb{F}_q$-rational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field $\mathbb{F}_q$, or in other words, the maximum number of zeros that a weighted homogeneous polynomial of a given degree can have in the corresponding weighted projective space over $\mathbb{F}_q$. In the case of classical projective spaces, this question has been answered by J.-P. Serre. In the case of weighted projective spaces, we give some conjectures and partial results. Applications to coding theory are included and an appendix providing a brief compendium of results about weighted projective spaces is also included.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.