Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A recursive construction for projective Reed-Muller codes (2312.05072v2)

Published 8 Dec 2023 in cs.IT, math.AC, and math.IT

Abstract: We give a recursive construction for projective Reed-Muller codes in terms of affine Reed-Muller codes and projective Reed-Muller codes in fewer variables. From this construction, we obtain the dimension of the subfield subcodes of projective Reed-Muller codes for some particular degrees that give codes with good parameters. Moreover, from this recursive construction we derive a lower bound for the generalized Hamming weights of projective Reed-Muller codes which is sharp in most of the cases we have checked.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Maximum number of common zeros of homogeneous polynomials over finite fields. Proc. Amer. Math. Soc., 146(4):1451–1468, 2018.
  2. Vanishing ideals of projective spaces over finite fields and a projective footprint bound. Acta Math. Sin. (Engl. Ser.), 35(1):47–63, 2019.
  3. A combinatorial approach to the number of solutions of systems of homogeneous polynomial equations over finite fields. Mosc. Math. J., 22(4):565–593, 2022.
  4. J. Bierbrauer. The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr., 25(2):189–206, 2002.
  5. T. Blackmore and G. H. Norton. Matrix-product codes over 𝔽qsubscript𝔽𝑞\mathbb{F}_{q}blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT. Appl. Algebra Engrg. Comm. Comput., 12(6):477–500, 2001.
  6. M. Boguslavsky. On the number of solutions of polynomial systems. Finite Fields Appl., 3(4):287–299, 1997.
  7. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
  8. M. Datta and S. R. Ghorpade. Number of solutions of systems of homogeneous polynomial equations over finite fields. Proc. Amer. Math. Soc., 145(2):525–541, 2017.
  9. On generalized Reed-Muller codes and their relatives. Information and Control, 16:403–442, 1970.
  10. New binary and ternary LCD codes. IEEE Trans. Inform. Theory, 65(2):1008–1016, 2019.
  11. C. Galindo and F. Hernando. Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr., 76(1):89–100, 2015.
  12. Stabilizer quantum codes from J𝐽Jitalic_J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process., 14(9):3211–3231, 2015.
  13. Entanglement-assisted quantum error-correcting codes from subfield subcodes of projective Reed-Solomon codes. ArXiv 2304.08121, 2023.
  14. Subfield subcodes of projective Reed-Muller codes. ArXiv 2307.09298, 2023.
  15. M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007. Accessed on 2023-04-04.
  16. P. Heijnen and R. Pellikaan. Generalized Hamming weights of q𝑞qitalic_q-ary Reed-Muller codes. IEEE Trans. Inform. Theory, 44(1):181–196, 1998.
  17. New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory, IT-14:189–199, 1968.
  18. G. Lachaud. Projective Reed-Muller codes. In Coding theory and applications (Cachan, 1986), volume 311 of Lecture Notes in Comput. Sci., pages 125–129. Springer, Berlin, 1988.
  19. C. Rentería and H. Tapia-Recillas. Reed-Muller codes: an ideal theory approach. Comm. Algebra, 25(2):401–413, 1997.
  20. A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991.
  21. V. K. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory, 37(5):1412–1418, 1991.
Citations (4)

Summary

We haven't generated a summary for this paper yet.