Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How do "technical" design-choices made when building algorithmic decision-making tools for criminal justice authorities create constitutional dangers? Part II (2301.04715v1)

Published 11 Jan 2023 in cs.CY

Abstract: This two-part paper argues that seemingly "technical" choices made by developers of machine-learning based algorithmic tools used to inform decisions by criminal justice authorities can create serious constitutional dangers, enhancing the likelihood of abuse of decision-making power and the scope and magnitude of injustice. Drawing on three algorithmic tools in use, or recently used, to assess the "risk" posed by individuals to inform how they should be treated by criminal justice authorities, we integrate insights from data science and public law scholarship to show how public law principles and more specific legal duties that are rooted in these principles, are routinely overlooked in algorithmic tool-building and implementation. We argue that technical developers must collaborate closely with public law experts to ensure that if algorithmic decision-support tools are to inform criminal justice decisions, those tools are configured and implemented in a manner that is demonstrably compliant with public law principles and doctrine, including respect for human rights, throughout the tool-building process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Karen Yeung (2 papers)
  2. Adam Harkens (2 papers)

Summary

We haven't generated a summary for this paper yet.