Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testing for the appropriate level of clustering in linear regression models (2301.04522v2)

Published 11 Jan 2023 in econ.EM

Abstract: The overwhelming majority of empirical research that uses cluster-robust inference assumes that the clustering structure is known, even though there are often several possible ways in which a dataset could be clustered. We propose two tests for the correct level of clustering in regression models. One test focuses on inference about a single coefficient, and the other on inference about two or more coefficients. We provide both asymptotic and wild bootstrap implementations. The proposed tests work for a null hypothesis of either no clustering or fine'' clustering against alternatives ofcoarser'' clustering. We also propose a sequential testing procedure to determine the appropriate level of clustering. Simulations suggest that the bootstrap tests perform very well under the null hypothesis and can have excellent power. An empirical example suggests that using the tests leads to sensible inferences.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.