Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Regret of Randomized Online Service Caching in Edge Computing (2301.04128v1)

Published 10 Jan 2023 in cs.NI

Abstract: This paper studies an online service caching problem, where an edge server, equipped with a prediction window of future service request arrivals, needs to decide which services to host locally subject to limited storage capacity. The edge server aims to minimize the sum of a request forwarding cost (i.e., the cost of forwarding requests to remote data centers to process) and a service instantiating cost (i.e., that of retrieving and setting up a service). Considering request patterns are usually non-stationary in practice, the performance of the edge server is measured by dynamic regret, which compares the total cost with that of the dynamic optimal offline solution. To solve the problem, we propose a randomized online algorithm with low complexity and theoretically derive an upper bound on its expected dynamic regret. Simulation results show that our algorithm significantly outperforms other state-of-the-art policies in terms of the runtime and expected total cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.