Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI Maintenance: A Robustness Perspective (2301.03052v1)

Published 8 Jan 2023 in cs.LG, cs.AI, and cs.CY

Abstract: With the advancements in ML methods and compute resources, AI empowered systems are becoming a prevailing technology. However, current AI technology such as deep learning is not flawless. The significantly increased model complexity and data scale incur intensified challenges when lacking trustworthiness and transparency, which could create new risks and negative impacts. In this paper, we carve out AI maintenance from the robustness perspective. We start by introducing some highlighted robustness challenges in the AI lifecycle and motivating AI maintenance by making analogies to car maintenance. We then propose an AI model inspection framework to detect and mitigate robustness risks. We also draw inspiration from vehicle autonomy to define the levels of AI robustness automation. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone toward building sustainable and trustworthy AI ecosystems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pin-Yu Chen (311 papers)
  2. Payel Das (104 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.