Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Virtual Node Graph Neural Network for Full Phonon Prediction (2301.02197v1)

Published 5 Jan 2023 in cond-mat.dis-nn and physics.comp-ph

Abstract: The structure-property relationship plays a central role in materials science. Understanding the structure-property relationship in solid-state materials is crucial for structure design with optimized properties. The past few years witnessed remarkable progress in correlating structures with properties in crystalline materials, such as machine learning methods and particularly graph neural networks as a natural representation of crystal structures. However, significant challenges remain, including predicting properties with complex unit cells input and material-dependent, variable-length output. Here we present the virtual node graph neural network to address the challenges. By developing three types of virtual node approaches - the vector, matrix, and momentum-dependent matrix virtual nodes, we achieve direct prediction of $\Gamma$-phonon spectra and full dispersion only using atomic coordinates as input. We validate the phonon bandstructures on various alloy systems, and further build a $\Gamma$-phonon database containing over 146,000 materials in the Materials Project. Our work provides an avenue for rapid and high-quality prediction of phonon spectra and bandstructures in complex materials, and enables materials design with superior phonon properties for energy applications. The virtual node augmentation of graph neural networks also sheds light on designing other functional properties with a new level of flexibility.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.