Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UAV aided Metaverse over Wireless Communications: A Reinforcement Learning Approach (2301.01474v1)

Published 4 Jan 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Metaverse is expected to create a virtual world closely connected with reality to provide users with immersive experience with the support of 5G high data rate communication technique. A huge amount of data in physical world needs to be synchronized to the virtual world to provide immersive experience for users, and there will be higher requirements on coverage to include more users into Metaverse. However, 5G signal suffers severe attenuation, which makes it more expensive to maintain the same coverage. Unmanned aerial vehicle (UAV) is a promising candidate technique for future implementation of Metaverse as a low-cost and high-mobility platform for communication devices. In this paper, we propose a proximal policy optimization (PPO) based double-agent cooperative reinforcement learning method for channel allocation and trajectory control of UAV to collect and synchronize data from the physical world to the virtual world, and expand the coverage of Metaverse services economically. Simulation results show that our proposed method is able to achieve better performance compared to the benchmark approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Peiyuan Si (6 papers)
  2. Wenhan Yu (19 papers)
  3. Jun Zhao (469 papers)
  4. Kwok-Yan Lam (74 papers)
  5. Qing Yang (138 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.