Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Acoustic Embeddings And Their Transferability Across Languages (2301.01020v1)

Published 3 Jan 2023 in cs.CL, cs.SD, and eess.AS

Abstract: In speech recognition, it is essential to model the phonetic content of the input signal while discarding irrelevant factors such as speaker variations and noise, which is challenging in low-resource settings. Self-supervised pre-training has been proposed as a way to improve both supervised and unsupervised speech recognition, including frame-level feature representations and Acoustic Word Embeddings (AWE) for variable-length segments. However, self-supervised models alone cannot learn perfect separation of the linguistic content as they are trained to optimize indirect objectives. In this work, we experiment with different pre-trained self-supervised features as input to AWE models and show that they work best within a supervised framework. Models trained on English can be transferred to other languages with no adaptation and outperform self-supervised models trained solely on the target languages.

Citations (3)

Summary

We haven't generated a summary for this paper yet.