A Policy Optimization Method Towards Optimal-time Stability
Abstract: In current model-free reinforcement learning (RL) algorithms, stability criteria based on sampling methods are commonly utilized to guide policy optimization. However, these criteria only guarantee the infinite-time convergence of the system's state to an equilibrium point, which leads to sub-optimality of the policy. In this paper, we propose a policy optimization technique incorporating sampling-based Lyapunov stability. Our approach enables the system's state to reach an equilibrium point within an optimal time and maintain stability thereafter, referred to as "optimal-time stability". To achieve this, we integrate the optimization method into the Actor-Critic framework, resulting in the development of the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm. Through evaluations conducted on ten robotic tasks, our approach outperforms previous studies significantly, effectively guiding the system to generate stable patterns.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.