Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Student Attribute Inference (2212.14682v1)

Published 26 Dec 2022 in cs.CY, cs.AI, and cs.LG

Abstract: Accurately predicting their future performance can ensure students successful graduation, and help them save both time and money. However, achieving such predictions faces two challenges, mainly due to the diversity of students' background and the necessity of continuously tracking their evolving progress. The goal of this work is to create a system able to automatically detect students in difficulty, for instance predicting if they are likely to fail a course. We compare a naive approach widely used in the literature, which uses attributes available in the data set (like the grades), with a personalized approach we called Personalized Student Attribute Inference (PSAI). With our model, we create personalized attributes to capture the specific background of each student. Both approaches are compared using machine learning algorithms like decision trees, support vector machine or neural networks.

Summary

We haven't generated a summary for this paper yet.