Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

AttEntropy: On the Generalization Ability of Supervised Semantic Segmentation Transformers to New Objects in New Domains (2212.14397v3)

Published 29 Dec 2022 in cs.CV

Abstract: In addition to impressive performance, vision transformers have demonstrated remarkable abilities to encode information they were not trained to extract. For example, this information can be used to perform segmentation or single-view depth estimation even though the networks were only trained for image recognition. We show that a similar phenomenon occurs when explicitly training transformers for semantic segmentation in a supervised manner for a set of categories: Once trained, they provide valuable information even about categories absent from the training set. This information can be used to segment objects from these never-seen-before classes in domains as varied as road obstacles, aircraft parked at a terminal, lunar rocks, and maritime hazards.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.