Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Edge convex smooth interpolation curve networks with minimum $L_{\infty}$-norm of the second derivative (2212.11981v1)

Published 22 Dec 2022 in math.NA and cs.NA

Abstract: We consider the extremal problem of interpolation of convex scattered data in $\mathbb{R}3$ by smooth edge convex curve networks with minimal $L_p$-norm of the second derivative for $1<p\leq\infty$. The problem for $p=2$ was set and solved by Andersson et al. (1995). Vlachkova (2019) extended the results in (Andersson et al., 1995) and solved the problem for $1<p<\infty$. The minimum edge convex $L_p$-norm network for $1<p<\infty$ is obtained from the solution to a system of nonlinear equations with coefficients determined by the data. The solution in the case $1<p<\infty$ is unique for strictly convex data. The corresponding extremal problem for $p=\infty$ remained open. Here we show that the extremal interpolation problem for $p=\infty$ always has a solution. We give a characterization of this solution. We show that a solution to the problem for $p=\infty$ can be found by solving a system of nonlinear equations in the case where it exists.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube