Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The curse of dimensionality for the $L_p$-discrepancy with finite $p$ (2303.01787v2)

Published 3 Mar 2023 in math.NA, cs.NA, and math.NT

Abstract: The $L_p$-discrepancy is a quantitative measure for the irregularity of distribution of an $N$-element point set in the $d$-dimensional unit cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. Its inverse for dimension $d$ and error threshold $\varepsilon \in (0,1)$ is the minimal number of points in $[0,1)d$ such that the minimal normalized $L_p$-discrepancy is less or equal $\varepsilon$. It is well known, that the inverse of $L_2$-discrepancy grows exponentially fast with the dimension $d$, i.e., we have the curse of dimensionality, whereas the inverse of $L_{\infty}$-discrepancy depends exactly linearly on $d$. The behavior of inverse of $L_p$-discrepancy for general $p \not\in {2,\infty}$ has been an open problem for many years. In this paper we show that the $L_p$-discrepancy suffers from the curse of dimensionality for all $p$ in $(1,2]$ which are of the form $p=2 \ell/(2 \ell -1)$ with $\ell \in \mathbb{N}$. This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite $L_q$-norm, where $q$ is an even positive integer satisfying $1/p+1/q=1$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.