Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable AI meets Healthcare: A Study on Heart Disease Dataset (2011.03195v1)

Published 6 Nov 2020 in cs.LG and cs.AI

Abstract: With the increasing availability of structured and unstructured data and the swift progress of analytical techniques, AI is bringing a revolution to the healthcare industry. With the increasingly indispensable role of AI in healthcare, there are growing concerns over the lack of transparency and explainability in addition to potential bias encountered by predictions of the model. This is where Explainable Artificial Intelligence (XAI) comes into the picture. XAI increases the trust placed in an AI system by medical practitioners as well as AI researchers, and thus, eventually, leads to an increasingly widespread deployment of AI in healthcare. In this paper, we present different interpretability techniques. The aim is to enlighten practitioners on the understandability and interpretability of explainable AI systems using a variety of techniques available which can be very advantageous in the health-care domain. Medical diagnosis model is responsible for human life and we need to be confident enough to treat a patient as instructed by a black-box model. Our paper contains examples based on the heart disease dataset and elucidates on how the explainability techniques should be preferred to create trustworthiness while using AI systems in healthcare.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Devam Dave (2 papers)
  2. Het Naik (2 papers)
  3. Smiti Singhal (2 papers)
  4. Pankesh Patel (15 papers)
Citations (52)