Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Numerical range for weighted Moore-Penrose inverse of tensor (2212.10832v1)

Published 21 Dec 2022 in math.NA, cs.NA, and math.FA

Abstract: This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in the matrix setting that generalizes some of the existing results as particular cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube