Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computation of outer inverse of tensors based on $t$-product (2311.17507v1)

Published 29 Nov 2023 in math.NA and cs.NA

Abstract: Tensor operations play an essential role in various fields of science and engineering, including multiway data analysis. In this study, we establish a few basic properties of the range and null space of a tensor using block circulant matrices and the discrete Fourier matrix. We then discuss the outer inverse of tensors based on $t$-product with a prescribed range and kernel of third-order tensors. We address the relation of this outer inverse with other generalized inverses, such as the Moore-Penrose inverse, group inverse, and Drazin inverse. In addition, we present a few algorithms for computing the outer inverses of the tensors. In particular, a $t$-QR decomposition based algorithm is developed for computing the outer inverses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput., 30(1):205–231, 2007/08.
  2. Computation of generalized inverses of tensors via t𝑡titalic_t-product. Numer. Linear Algebra Appl., 29(2):Paper No. e2416, 24, 2022.
  3. A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and applications. Springer-Verlag, New York, 2003.
  4. K. Braman. Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl., 433(7):1241–1253, 2010.
  5. Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl., 34(2):542–570, 2013.
  6. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl., 480:168–175, 2015.
  7. Generalized inverses of linear transformations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
  8. T. F. Chan. Rank revealing QR factorizations. Linear Algebra Appl., 88-89:67–82, 1987.
  9. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl., 32(3):806–819, 2011.
  10. Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra, 67(7):1364–1391, 2019.
  11. Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. Linear Algebra Appl., 533:536–572, 2017.
  12. Stochastic R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tensors to stochastic tensor complementarity problems. Optim. Lett., 13(2):261–279, 2019.
  13. M. Che and Y. Wei. An efficient algorithm for computing the approximate t-URV and its applications. J. Sci. Comput., 92(3):27, 2022. Id/No 93.
  14. Perturbations of tensor-schur decomposition and its applications to multilinear control systems and facial recognitions. Neurocomputing, 547, 2023. Id/No 126359.
  15. Tensor CUR decomposition under T-product and its perturbation. Numer. Funct. Anal. Optim., 43(6):698–722, 2022.
  16. The Fiedler vector of a Laplacian tensor for hypergraph partitioning. SIAM J. Sci. Comput., 39(6):A2508–A2537, 2017.
  17. Z. Cong and H. Ma. Acute perturbation for Moore-Penrose inverses of tensors via the T-product. J. Appl. Math. Comput., 68(6):3799–3820, 2022.
  18. Z. Cong and H. Ma. Characterizations and perturbations of the core-EP inverse of tensors based on the T-product. Numer. Funct. Anal. Optim., 43(10):1150–1200, 2022.
  19. J. Cooper and A. Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl., 436(9):3268–3292, 2012.
  20. Y. Cui and H. Ma. The perturbation bound for the T-Drazin inverse of tensor and its application. Filomat, 35:1565–1587, 2021.
  21. W. Ding and Y. Wei. Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl., 36(3):1073–1099, 2015.
  22. W. Ding and Y. Wei. Solving multi-linear systems with ℳℳ\mathcal{M}caligraphic_M-tensors. J. Sci. Comput., 68(2):689–715, 2016.
  23. J. A. Duersch and M. Gu. Randomized QR with column pivoting. SIAM J. Sci. Comput., 39(4):C263–C291, 2017.
  24. J. A. Duersch and M. Gu. Randomized projection for rank-revealing matrix factorizations and low-rank approximations. SIAM Rev., 62(3):661–682, 2020.
  25. A. Einstein. The foundation of the general theory of relativity. Annalen der Physik, 49(7):769–822, 1916.
  26. T-adaf: Adaptive data augmentation framework for image classification network based on tensor t-product operator. Neural Process Letter, 2023. https://doi.org/10.1007/s11063-023-11361-7.
  27. Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci., 6(1):437–463, 2013.
  28. Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition. IEEE Trans. Image Process., 26(2):724–737, 2017.
  29. Tensor extreme learning design via generalized moore–penrose inverse and triangular type-2 fuzzy sets. Neural Computing and Applications, 31:5641–5651, 2019.
  30. J. Ji and Y. Wei. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl., 75(9):3402–3413, 2018.
  31. J. Ji and Y. Wei. The outer generalized inverse of an even-order tensor with the Einstein product through the matrix unfolding and tensor folding. Electron. J. Linear Algebra, 36:599–615, 2020.
  32. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl., 34(1):148–172, 2013.
  33. Factorization strategies for third-order tensors. Linear Algebra Appl., 435(3):641–658, 2011.
  34. P. M. Kroonenberg. Applied multiway data analysis. John Wiley & Sons, 2008.
  35. Improved robust tensor principal component analysis via low-rank core matrix. IEEE Journal of Selected Topics in Signal Processing, 12(6):1378–1389, 2018.
  36. Y. Liu and H. Ma. Perturbation of the weighted T-core-EP inverse of tensors based on the T-product. Commun. Math. Res., 37(4):496–536, 2021.
  37. Noda iteration for computing generalized tensor eigenpairs. J. Comput. Appl. Math., 432:25, 2023. Id/No 115284.
  38. An order-p𝑝pitalic_p tensor factorization with applications in imaging. SIAM J. Sci. Comput., 35(1):A474–A490, 2013.
  39. Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl., 590:258–303, 2020.
  40. T-Jordan canonical form and T-Drazin Inverse based on the T-Product. Commun. Appl. Math. Comput., 3(2):201–220, 2021.
  41. Time-varying generalized tensor eigenanalysis via zhang neural networks. Neurocomputing, 407:465–479, 2020.
  42. M. Z. Nashed. Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim., 9(3-4):261–325, 1987.
  43. M. Z. Nashed. Generalized Inverses and Applications: Proceedings of an Advanced Seminar. Number 32. Elsevier, 2014.
  44. L. Qi and Z. Luo. Tensor Analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. Spectral theory and special tensors.
  45. Generalized inverse of matrices and its applications. John Wiley & Sons, Inc., New York-London-Sydney, 1971.
  46. J.-Y. Shao. A general product of tensors with applications. Linear Algebra Appl., 439(8):2350–2366, 2013.
  47. Tensor decomposition for signal processing and machine learning. IEEE Transactions on signal processing, 65(13):3551–3582, 2017.
  48. New classes of more general weighted outer inverses. Linear Multilinear Algebra, 70(1):122–147, 2022.
  49. Full-rank representations of outer inverses based on the QR decomposition. Appl. Math. Comput., 218(20):10321–10333, 2012.
  50. Generalized inverses of tensors via a general product of tensors. Front. Math. China, 13(4):893–911, 2018.
  51. Generalized inverses: theory and computations. Springer, Singapore; Science Press Beijing, Beijing, 2018.
  52. Solving the system of nonsingular tensor equations via randomized Kaczmarz-like method. J. Comput. Appl. Math., 421:15, 2023. Id/No 114856.
  53. Randomized Kaczmarz methods for tensor complementarity problems. Comput. Optim. Appl., 82(3):595–615, 2022.
  54. Predefined-time convergent neural networks for solving the time-varying nonsingular multi-linear tensor equations. Neurocomputing, 472:68–84, 2022.
  55. A fixed point iterative method for third-order tensor linear complementarity problems. J. Optim. Theory Appl., 197(1):334–357, 2023.
  56. Neural network models for time-varying tensor complementarity problems. Neurocomputing, 523:18–32, 2023.
  57. Y. Wei. A characterization and representation of the generalized inverse AT,S(2)superscriptsubscript𝐴𝑇𝑆2A_{T,S}^{(2)}italic_A start_POSTSUBSCRIPT italic_T , italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT and its applications. Linear Algebra Appl., 280(2-3):87–96, 1998.
  58. T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming. Comput. Optim. Appl., 78(1):239–272, 2021.
  59. Y. Zhu and Y. Wei. Tensor LU and QR decompositions and their randomized algorithms. Computational Mathematics and Computer Modeling with Applications (CMCMA), 1(1):1–16, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.