Papers
Topics
Authors
Recent
2000 character limit reached

Positive-incentive Noise (2212.09541v1)

Published 19 Dec 2022 in cs.LG

Abstract: Noise is conventionally viewed as a severe problem in diverse fields, e.g., engineering, learning systems. However, this paper aims to investigate whether the conventional proposition always holds. It begins with the definition of task entropy, which extends from the information entropy and measures the complexity of the task. After introducing the task entropy, the noise can be classified into two kinds, Positive-incentive noise (Pi-noise or $\pi$-noise) and pure noise, according to whether the noise can reduce the complexity of the task. Interestingly, as shown theoretically and empirically, even the simple random noise can be the $\pi$-noise that simplifies the task. $\pi$-noise offers new explanations for some models and provides a new principle for some fields, such as multi-task learning, adversarial training, etc. Moreover, it reminds us to rethink the investigation of noises.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.