Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Antimicrobial Peptide Discovery with Latent Structure (2212.09450v2)

Published 28 Nov 2022 in q-bio.BM, cs.CE, and cs.LG

Abstract: Antimicrobial peptides (AMPs) are promising therapeutic approaches against drug-resistant pathogens. Recently, deep generative models are used to discover new AMPs. However, previous studies mainly focus on peptide sequence attributes and do not consider crucial structure information. In this paper, we propose a latent sequence-structure model for designing AMPs (LSSAMP). LSSAMP exploits multi-scale vector quantization in the latent space to represent secondary structures (e.g. alpha helix and beta sheet). By sampling in the latent space, LSSAMP can simultaneously generate peptides with ideal sequence attributes and secondary structures. Experimental results show that the peptides generated by LSSAMP have a high probability of antimicrobial activity. Our wet laboratory experiments verified that two of the 21 candidates exhibit strong antimicrobial activity. The code is released at https://github.com/dqwang122/LSSAMP.

Summary

We haven't generated a summary for this paper yet.