Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Adversarial Robustness of Attributions in Text with Transformers (2212.09155v1)

Published 18 Dec 2022 in cs.LG and cs.AI

Abstract: Explanations are crucial parts of deep neural network (DNN) classifiers. In high stakes applications, faithful and robust explanations are important to understand and gain trust in DNN classifiers. However, recent work has shown that state-of-the-art attribution methods in text classifiers are susceptible to imperceptible adversarial perturbations that alter explanations significantly while maintaining the correct prediction outcome. If undetected, this can critically mislead the users of DNNs. Thus, it is crucial to understand the influence of such adversarial perturbations on the networks' explanations and their perceptibility. In this work, we establish a novel definition of attribution robustness (AR) in text classification, based on Lipschitz continuity. Crucially, it reflects both attribution change induced by adversarial input alterations and perceptibility of such alterations. Moreover, we introduce a wide set of text similarity measures to effectively capture locality between two text samples and imperceptibility of adversarial perturbations in text. We then propose our novel TransformerExplanationAttack (TEA), a strong adversary that provides a tight estimation for attribution robustness in text classification. TEA uses state-of-the-art LLMs to extract word substitutions that result in fluent, contextual adversarial samples. Finally, with experiments on several text classification architectures, we show that TEA consistently outperforms current state-of-the-art AR estimators, yielding perturbations that alter explanations to a greater extent while being more fluent and less perceptible.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Adam Ivankay (7 papers)
  2. Mattia Rigotti (30 papers)
  3. Ivan Girardi (9 papers)
  4. Chiara Marchiori (6 papers)
  5. Pascal Frossard (194 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.