Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Physics-Informed Neural Networks for Forward and Inverse Analysis of Pile-Soil Interaction (2212.08306v1)

Published 16 Dec 2022 in cs.CE

Abstract: The application of the Physics-Informed Neural Networks (PINNs) to forward and inverse analysis of pile-soil interaction problems is presented. The main challenge encountered in the Artificial Neural Network (ANN) modelling of pile-soil interaction is the presence of abrupt changes in material properties, which results in large discontinuities in the gradient of the displacement solution. Therefore, a domain-decomposition multi-network model is proposed to deal with the discontinuities in the strain fields at common boundaries of pile-soil regions and soil layers. The application of the model to the analysis and parametric study of single piles embedded in both homogeneous and layered formations is demonstrated under axisymmetric and plane strain conditions. The performance of the model in parameter identification (inverse analysis) of pile-soil interaction is particularly investigated. It is shown that by using PINNs, the localized data acquired along the pile length - possibly obtained via fiber optic strain sensing - can be successfully used for the inversion of soil parameters in layered formations.

Citations (20)

Summary

We haven't generated a summary for this paper yet.