Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Robust Classification (2212.07283v1)

Published 14 Dec 2022 in cs.LG and cs.CV

Abstract: Training adversarially robust discriminative (i.e., softmax) classifier has been the dominant approach to robust classification. Building on recent work on adversarial training (AT)-based generative models, we investigate using AT to learn unnormalized class-conditional density models and then performing generative robust classification. Our result shows that, under the condition of similar model capacities, the generative robust classifier achieves comparable performance to a baseline softmax robust classifier when the test data is clean or when the test perturbation is of limited size, and much better performance when the test perturbation size exceeds the training perturbation size. The generative classifier is also able to generate samples or counterfactuals that more closely resemble the training data, suggesting that the generative classifier can better capture the class-conditional distributions. In contrast to standard discriminative adversarial training where advanced data augmentation techniques are only effective when combined with weight averaging, we find it straightforward to apply advanced data augmentation to achieve better robustness in our approach. Our result suggests that the generative classifier is a competitive alternative to robust classification, especially for problems with limited number of classes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xuwang Yin (20 papers)

Summary

We haven't generated a summary for this paper yet.