Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Cross-Modal Similarity-Based Curriculum Learning for Image Captioning (2212.07075v1)

Published 14 Dec 2022 in cs.CV and cs.CL

Abstract: Image captioning models require the high-level generalization ability to describe the contents of various images in words. Most existing approaches treat the image-caption pairs equally in their training without considering the differences in their learning difficulties. Several image captioning approaches introduce curriculum learning methods that present training data with increasing levels of difficulty. However, their difficulty measurements are either based on domain-specific features or prior model training. In this paper, we propose a simple yet efficient difficulty measurement for image captioning using cross-modal similarity calculated by a pretrained vision-LLM. Experiments on the COCO and Flickr30k datasets show that our proposed approach achieves superior performance and competitive convergence speed to baselines without requiring heuristics or incurring additional training costs. Moreover, the higher model performance on difficult examples and unseen data also demonstrates the generalization ability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.