Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The disaggregated integer L-shaped method for the stochastic vehicle routing problem (2212.06962v4)

Published 14 Dec 2022 in math.OC

Abstract: This paper proposes a new integer L-shaped method for solving two-stage stochastic integer programs whose first-stage solutions can decompose into disjoint components, each one having a monotonic recourse function. In a minimization problem, the monotonicity property stipulates that the recourse cost of a component must always be higher or equal to that of any of its subcomponents. The method exploits new types of optimality cuts and lower bounding functionals that are valid under this property. The stochastic vehicle routing problem is particularly well suited to be solved by this approach, as its solutions can be decomposed into a set of routes. We consider the variant with stochastic demands in which the recourse policy consists of performing a return trip to the depot whenever a vehicle does not have sufficient capacity to accommodate a newly realized customer demand. This work shows that this policy can lead to a non-monotonic recourse function, but that the monotonicity holds when the customer demands are modeled by several commonly used families of probability distributions. We also present new problem-specific lower bounds on the recourse that strengthen the lower bounding functionals and significantly speed up the resolution process. Computational experiments on instances from the literature show that the new approach achieves state-of-the-art results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube