Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAPS-KB: A Million-scale Probabilistic Simile Knowledge Base (2212.05254v1)

Published 10 Dec 2022 in cs.CL and cs.AI

Abstract: The ability to understand and generate similes is an imperative step to realize human-level AI. However, there is still a considerable gap between machine intelligence and human cognition in similes, since deep models based on statistical distribution tend to favour high-frequency similes. Hence, a large-scale symbolic knowledge base of similes is required, as it contributes to the modeling of diverse yet unpopular similes while facilitating additional evaluation and reasoning. To bridge the gap, we propose a novel framework for large-scale simile knowledge base construction, as well as two probabilistic metrics which enable an improved understanding of simile phenomena in natural language. Overall, we construct MAPS-KB, a million-scale probabilistic simile knowledge base, covering 4.3 million triplets over 0.4 million terms from 70 GB corpora. We conduct sufficient experiments to justify the effectiveness and necessity of the methods of our framework. We also apply MAPS-KB on three downstream tasks to achieve state-of-the-art performance, further demonstrating the value of MAPS-KB.

Citations (2)

Summary

We haven't generated a summary for this paper yet.