Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Audio-Visual Speech Representations Learning By Multimodal Self-Distillation (2212.02782v1)

Published 6 Dec 2022 in eess.AS and cs.SD

Abstract: In this work, we present a novel method, named AV2vec, for learning audio-visual speech representations by multimodal self-distillation. AV2vec has a student and a teacher module, in which the student performs a masked latent feature regression task using the multimodal target features generated online by the teacher. The parameters of the teacher model are a momentum update of the student. Since our target features are generated online, AV2vec needs no iteration step like AV-HuBERT and the total training time cost is reduced to less than one-fifth. We further propose AV2vec-MLM in this study, which augments AV2vec with a masked LLM (MLM)-style loss using multitask learning. Our experimental results show that AV2vec achieved comparable performance to the AV-HuBERT baseline. When combined with an MLM-style loss, AV2vec-MLM outperformed baselines and achieved the best performance on the downstream tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.