Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases

Published 5 Dec 2022 in cs.CV, cs.AI, cs.HC, and cs.LG | (2212.02648v3)

Abstract: We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues. Instead of requiring costly changes to one's data or model training, our method better utilizes the data one already has by sorting them. Specifically, we rank images within their classes based on spuriosity (the degree to which common spurious cues are present), proxied via deep neural features of an interpretable network. With spuriosity rankings, it is easy to identify minority subpopulations (i.e. low spuriosity images) and assess model bias as the gap in accuracy between high and low spuriosity images. One can even efficiently remove a model's bias at little cost to accuracy by finetuning its classification head on low spuriosity images, resulting in fairer treatment of samples regardless of spuriosity. We demonstrate our method on ImageNet, annotating $5000$ class-feature dependencies ($630$ of which we find to be spurious) and generating a dataset of $325k$ soft segmentations for these features along the way. Having computed spuriosity rankings via the identified spurious neural features, we assess biases for $89$ diverse models and find that class-wise biases are highly correlated across models. Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.