Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Face Anti-Spoofing via Multi-Task Learning and One-Side Meta Triplet Loss (2211.15955v1)

Published 29 Nov 2022 in cs.CV

Abstract: With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.

Citations (3)

Summary

We haven't generated a summary for this paper yet.