Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretized Linear Regression and Multiclass Support Vector Based Air Pollution Forecasting Technique (2211.15095v1)

Published 28 Nov 2022 in cs.LG

Abstract: Air pollution is a vital issue emerging from the uncontrolled utilization of traditional energy sources as far as developing countries are concerned. Hence, ingenious air pollution forecasting methods are indispensable to minimize the risk. To that end, this paper proposes an Internet of Things (IoT) enabled system for monitoring and controlling air pollution in the cloud computing environment. A method called Linear Regression and Multiclass Support Vector (LR-MSV) IoT-based Air Pollution Forecast is proposed to monitor the air quality data and the air quality index measurement to pave the way for controlling effectively. Extensive experiments carried out on the air quality data in the India dataset have revealed the outstanding performance of the proposed LR-MSV method when benchmarked with well-established state-of-the-art methods. The results obtained by the LR-MSV method witness a significant increase in air pollution forecasting accuracy by reducing the air pollution forecasting time and error rate compared with the results produced by the other state-of-the-art methods

Citations (1)

Summary

We haven't generated a summary for this paper yet.